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Computer simulation studies of the dependence on density 
of the orientational order in nematic liquid crystals 

by J. W. EMSLEY*, G. R. LUCKHURST, W. E. PALKEt 
and D. J. TILDESLEY 

Department of Chemistry, University of Southampton, 
Southampton SO9 5NH, England 

(Received 4 September 1991; accepted 4 November 1991) 

Simulations of the temperature dependence of the nematic orientational 
order parameter, p2, at different densities have been made using the Gay- 
Berne potential. The results are used to calculate = -(a In T/a  In OF,, 
which is a measure of the relative sensitivity of pz to temperature and density. 
Previous experimental measurements of r have obtained values in the range 
2 4  for real nematogens, whilst the present simulations yield r = 8 & 1. 
Changing the Gay-Berne potential by increasing the steepness of the 
repulsive term increases the calculated value of r, whilst changing the relative 
well depths for side-by-side compared to end-to-end arrangements of Gay- 
Berne particles leaves r virtually unchanged. These exploratory calculations 
suggest that r is a useful parameter for testing the parametrizations of model 
potentials. 

1. Introduction 
The molecules in a liquid crystal phase have long range orientational order, such 

that for a unit vector, Q, fixed in a rigid sub-unit of the mesogen, FL, the averages of the 
Legendre polynomials PL(B a) are non-zero for L even. The unit vector A, known as the 
director, specifies the average orientation of the vectors Q at any point in the sample. 
For simplicity we shall consider molecules which are rigid and cylindrically symmetric, 
in which case only one vector Q, coinciding with the symmetry axis, is necessary for 
describing the orientational ordering of the whole molecule. The second-rank order 
parameter, P2, can be measured by a variety of methods [l], and our discussions will be 
confined to this member of the set P p  The dependence of P2 on temperature and 
pressure has been studied experimentally [2-91, and from this data it is possible to 
obtain the dependence on density, p, (or molar volume, V) of P2. The procedure is 
straightforward if the equation of state for the nematic phase is known, and there have 
been a limited number of studies of this kind [3-7,9]. A convenient way of expressing 
the relative importance of temperature and density in determining F2 is the 
thermodynamic parameter, r, introduced by McColl [4], 

r = -(a In T/a  In vp2. 
The values of r obtained from experimental data cover the range 2-6. Attempts to 
relate the value of I- to the nature of the forces contributing to the anisotropic potential 
energy of the molecules have often relied on the molecular field approximation. In the 
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520 J. W. Emsley et al. 

simplest version of this model the potential of mean torque U(P) for a rigid, cylindrically 
symmetric molecule in the average potential field of all other molecules in the sample 
can be written as, 

where f l  is the angle between fi and the molecular symmetry axis, and E is a constant. 
This can be regarded as a phenomenological potential with y as an adjustable 
parameter with which to fit experimental data, and in this case y can be identified with 
r. However, Cotter [lo] has pointed out that if equation (2) is derived from a pair 
potential, then statistical mechanical consistency dictates that y = 1. This implies that 
although equation (2) is a possible approximate form for V(/3), the molecular 
significance of the value of y is obscure. Thus, if dispersion forces, which depend on rt; 6,  

where rij is the intermolecular separation, dominate V(@, then y and r might be 
expected to be close to a value of 2 [ll]. However, y also depends on the density 
dependence of the radial distribution function, and this is unknown. Probably the only 
practical way to interpret experimental values of in terms of the forces contributing to 
V(1) is to determine the density dependence of the orientational order by a numerical 
simulation based on a model for the pair potential. If such an approach is possible, then 
r could be used to optimise the parameters in the model potentials. With this aim in 
mind we have carried out simulations of the density dependence of orientational order 
using a model potential introduced by Gay and Berne [l2], which has been shown to 
give stable nematic and smectic phases [13-151. 

U(/3)= -EV-T2P2(COS/3), (2) 

2. The model potential 
Nematogens are composed of quite large molecules, with even the smallest 

containing 27 atoms. To solve the equations of motion for a sample of N such molecules 
interacting via an atom-atom potential, and to repeat the calculations until thermal 
equilibrium is established, imposes a practical limit on N with presently available 
computing power of about 128 molecules [16]. Repeating such calculations for the 
sample at different temperatures and densities imposes an added practical limitation. 
For these reasons we chose to use the simpler Gay-Berne potential, which attempts to 
model the potential between pairs of cylindrically symmetric particles. It is based on the 
single-site potential introduced first by Corner [17], which has range cry and strength E, 

parameters which depend on the orientations of the two particles, 

U(O,,Q,,P)=E~E;(Q1, Q,)E$(Q,, Q,,?)(R-’2 -R-6).  (3) 

Q, and Q, are unit vectors along the symmetry axes of the particles, and r is the vector 
between the centres of mass of two Gay-Berne particles, with P as the associated unit 
vector. The function is 

€,(a,, a,)= [l - X2(Q1 - Q,)2]-1’2, 

x= {(q/~J2- l ) } / H q / ~ L ) 2  + 1)). 

(4) 

(5 )  

where 

The function E,  is 

E,( 0 , 02 ,  3) = 1 - *x’{(? - Q , + P * a,),/( 1 + xr(Q a,)) + (0 , - P * a,),/( 1 - x’(Q , * a,))}, (6) 
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Computer simulation of nematics 521 

The labels 11 and I refer to the orientations of the particles axes relative to the inter- 
particle vector, r. The reduced and shifted distance parameter R is defined as 

with 

and 

a(G 1 , Q2, 0) = ~ o {  1 - $x[(? * Q 1 + 0 * a,)’/( 1 + x(0 1 * 02)) + (3 0 1 - 3 * a,)’/( 1 - x( Q 1 * a,))] } - ‘1’. 

(10) 
The parameters in this relatively complicated potential were chosen by Gay and Berne 
to mimic the potential between molecules comprising four centres equally spaced on a 
line at intervals of 200/3 and interacting via a 12-6 Lennard-Jones potential. Thus, the 
ratio aIl/a, is set equal to 3, v to 1, p to 2, and E , , / E ~ ,  the ratio of the well depths when the 
particles are either parallel or perpendicular to the inter-particle vector, is given the 
value of 1/5. With these values x is 0.8 and x‘ is 0.382. 

The scaled moment of inertia about an axis perpendicular to the molecular 
symmetry axis, I? = I,/ma; was assigned the value of 4, which is the same as in previous 
studies of the liquid crystal phases with this potential [13,14]. This was chosen to 
ensure that the optimum time steps for the orientational and translational motions 
were approximately the same. 

3. The calculations 
A modified version of the Gay-Berne simulation program written by Adams et al. 

[13] and described more fully by Luckhurst et al. [14], was used, and the calculations 
were carried out on an IBM 3090-150VF. The system consisted of 256 particles for most 
of the simulations. The intermolecular potential was truncated at a cut-off of 0.45 of the 
box length ( 4 . 2 7 ~ ~  at p* = Na$/V=0-30). On average about 100 neighbours were 
included in the calculations of the forces acting on, and the energy of, each particle. A 
scaled time step At* = At(&o/ma~)”2 of 0.005 was used for most of the calculations, but 
was decreased for some of the higher temperatures with the hybrid potential in order to 
insure the conservation of energy (the hybrid potential is defined in equation (18)). 
Energy fluctuations were kept below one part in lo4 over the whole of the simulation 
with this time step. For typical values of the parameters for the Gay-Berne particles the 
time step is about 10- l4s .  This value was obtained by taking a. to be 4% which is 
typical of rod-like mesogenic molecules. The energy parameter c0 was obtained from 
the scaled nematic-isotropic transition temperature, T&, (T* = k,T/Eo) of 2.0 and 
equating it with a typical transition temperature of 400 K, giving c0/kB = 200 K. The 
mass of the Gay-Berne particles was taken to correspond to the mass of 12 carbon 
atoms. Run lengths varied according to the ease of equilibration, and the importance of 
the particular temperature in calculating r. For those points near the nematic to 
isotropic transition, from 50k to lOOk or more, time steps were followed. 

The order parameter F2 was calculated by forming the Q tensor with elements 

where lai is the direction cosine of the ith particle and the ath box axis. Diagonalizing Q 
gives P2 as the largest eigenvalue and the director is the corresponding eigenvector. 
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522 J. W. Emsley et al. 

Preliminary simulations were done to establish that the runs were of sufficient 
length, that equilibrium had been reached, and that the values obtained for P ,  were 
independent of the initial configuration. To test the latter point two separate 
simulations were made, each corresponding to a scaled density of 0.35, and a scaled 
temperature T* = 3-0. One simulation started from an equilibrated sample at T* = 2.75, 
and the other from T* = 3.25, and the results are shown in figure 1. This shows values of 
P2 calculated at intervals of 500 time steps after changing the temperature to T* = 3.0. 
After about 2 x lo4 time steps the instantaneous values of P,  are independent of the 
starting configuration, but there is a considerable fluctuation about the time and 
ensemble average, P,, as expected. 

Two methods of calculating r were explored: one which directly mimics the 
experimental method, which we shall refer to as the direct method, and the other which 
is analogous to that used to calculate heat capacities, and which yields r from a single 
simulation at a fixed temperature and density. We shall refer to this as the fluctuation 
method. In the direct method, the temperature dependence of F2 is calculated at 
constant density from a number of simulations of the nematic phase. Repeating the 
calculations for at least one more density enables the partial derivatives in equation (1) 
to be estimated at constant F,. One disadvantage of this method is that it requires a 
very large amount of computer time. This is because characterization of the 
temperature dependence of P ,  requires exploratory calculations to locate the nematic- 
isotropic phase transition temperature, TNI, followed by sufficient calculations corre- 
sponding to different temperatures in the nematic phase so that comparisons at 
constant F, can be made for samples at different densities. This extensive set of 
calculations is analogous to the large number of NMR experiments that have to be 
made, for precisely the same reasons, in order to obtain r. It should be noted, however, 
that is rather easier to set the temperature or pressure in an NMR experiment than to 
obtain an ensemble at a desired temperature and density in the simulations. 

Figure 1. Dependence of Pz on time, t*, in units of thousands of scaled time steps At*, for two 
different starting configurations of 256 particles interacting via the Gay-Berne potential. 
The temperature T* is 30, and the density p* =0.35. The values of p2 were calculated at 
intervals in t* of 500 steps. One set of calculations started from an ensemble equilibrated at 
T* = 2.75( +), whilst the other started from T* = 3.25 (m). 
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Computer simulation of nematics 523 

The fluctuation method for obtaining r is based on re-expressing this parameter as, 

r =(VT) (aP2/av),/(aPz/aT), (1 1) 

T(aPz/aT), = [P,(cos /?)U - PzO]/(kBT), (12) 

v(a&w),= [ P z  W-P,(COS B)w/(kBT). (13) 

and noting that, as shown in the Appendix, for the canonical ensemble 

whilst 

The bar denotes an ensemble average. The function W which is related to the virial, is 
given by 

with rij the magnitude of a particular inter-pair separation, and 

is the total potential energy of a configuration. Note the similarity of these expressions 
to that for C,=(aU/aT),, the specific heat at constant volume, 

c,= [g- 02]/(kBTZ). (15) 
These fluctuation formulae are based on averages in the canonical ensemble, and they 
must be modified, as discussed by Allen and Tildesley [18], for use in the 
microcanonical ensemble explored by the standard molecular dynamics simulation. 
The modifications are given in the Appendix. 

4. Results and discussions 
4.1. Calculations on static arrays 

We addressed first the question of what range of densities should be used. We were 
guided by the knowledge that Adams et al. [13] had established that a nematic phase 
exists when p* is 0-32, which is in accord with the phase diagram obtained by Frenkel et 
al. [19] for a system of hard ellipsoids. It remained to investigate the value p* has for a 
solid sample of particles interacting with the Gay-Berne potential at 0 K. To do this a 
study was made of the most stable arrangements of Gay-Berne particles in the solid 
phase at 0 K. This did not aim to explore all possible lattices, since this would have been 
too time consuming, but rather to examine the relative energies of the most probable 
arrangements in order to establish a range of densities which would be close to those of 
real systems. The quantity of interest is Uarray, the potential energy per particle for a 
particular lattice. The geometry of the unit cell was varied to obtain theminimum Uarray 
for different lattices. The system size for these calculations was increased until U,,,,, 
was independent of N. This was achieved with N equal to about 4000. Originally single 
layers were studied, and the minimum energy structure was hexagonal packing with the 
particle long axes parallel to the layer normal. Tilting one or all of the molecules raises 
the energy. 

Calculations on three dimensional layers showed that hexagonal layers with an 
ABAB layer arrangement is slightly more stable than an ABCABC stacking pattern. If 
an AAA stacking is adopted, the energy is a minimum when the particles are tilted to 
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524 J. W. Emsley et al. 

point into the holes in the neighbouring layers, and the energy is well above that of the 
non-tilted ABAB or ABCABC patterns. The ratio of the side-by-side separation of the 
particles within a layer to the interlayer separation in the optimised ABAB structure is 
2-226, compared with a value of 3 if the particles are stacked end-to-end. Clearly, 
therefore, there is considerable interdigitation of the layers. A similar layer interdigit- 
ation has been found for the crystal smectic B phase formed by a sample interacting 
with the Gay-Berne potential [20]; in this case the ratio was found to be 2.6 for ABAB 
packing. 

The density p* is 0.3776 for both ABAB and ABCABC optimized packing for the 
solid. Changes in the density on melting for real mesogens are typically 10 per cent, and 
so densities in the range 0.3W-35 were used in our simulations on the liquid phases. 
After our simulations were completed a study was published of the phase diagram of 
particles interacting with a Gay-Berne potential, which showed that in their 
simulations the nematic phase is stable over the narrow range of approximately 
p* =0*30-0.36 [lS]. 

4.2. Calculations of I- from the temperature and density dependence of P2 
Figure 2 shows the dependence of P ,  on scaled temperature, T*, for values of p* of 

0-30, 0.32 and 0.35. To obtain r requires choosing points on the three curves 
corresponding to constant values of P,. Fluctuations in time of the instantaneous 
values of F, are large, as shown in figure 1, and so picking a value of T* at which F,  has 
a particular value is necessarily imprecise. This problem was alleviated by fitting the 
simulation data to a smooth curve. We chose as an appropriate functional form 

P2 = 0.9(1- T*/T&)@ + 0.1 for T* < T& 

P,=O.l for T* > T;,. 

This is similar to that used to fit experimental data [21], with the important difference 
that P ,  is observed to be zero in a real isotropic phase, whereas in the simulations a 
non-zero value is obtained, even at very high temperatures. It has been argued [22] that 
in simulations the value of F, calculated from the Q tensor should tend to a value of 
N-'12 in the isotropic phase, and this accords with the value of 0.1 used in the present 
calculations. Values of f l  and T$ were found which give best fits to the data at each of 
the three densities, and these are given in the table; the function is drawn as the solid 
lines in figure 2. A separate evaluation of is obtained from each pair of p2(T*) curves 
at two different densities. The most accurate values of r are obtained by choosing a 
value for P2 in the region where it is changing most rapidly with temperature, and hence 
the values in the table were obtained for F2 = 0.4, but the resulting r is not sensitive to 
the particular value chosen for P,. 

The molecular field potential given in equation (l), with y=T, leads to the 

and (16) 

relationship, 
(17) 

Values of r obtained from the three pairs of T& values are shown in the table, and are 
virtually identical with those obtained by the direct method. The values of r 
determined by these methods have an average of 8 1, which is just beyond the top of 
the range found experimentally. This suggests that the Gay-Berne potential should be 
modified in order to accord more closely to real liquid crystals. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Computer simulation of nematics 525 

0 0.5 1 1.5 2 2.5 3 3.5 4 

T *  

Figure 2. Dependence of F2 on scaled temperature, T*, for scaled densities, p* =0.30 (O), 0.32 
(A), and 0.35 (H), calculated for the standard Gay-Berne potential. The continuous lines 
are the best fits to equation (16). 

Values of the nematic-isotropic transition temperature, T&, for different densities, p*. The values 
of fl  are those which give the best fits of the data to equation (16). The values of are those 
calculated from pairs of values of T$ using equation (17), and also obtained by the direct 
method with p2 constant at 04. U,, is the standard Gay-Berne potential, U,, is the 
hybrid version, and U,=, that with E ~ / E , ,  = 7. 

r 
T& From T& Direct method Potential P* B 

U G B  0.30 037 0.94 7.3 (030, 032)t 7.3 
0.32 0.43 1.51 8.7 (0.32, 0.35) 8.3 
0.35 045 3.29 8.1 (030, 035) 7.9 

0.35 0.58 15.02 

0.35 0.37 287 

U H B  0.32 056 5.86 105 (032, 0-35) 10.4 

ue=, 0.32 029 1-31 8.7 (0-32,0.35) 8-4 

7 The pairs of densities from which r is calculated. 

4.3. Calculations of r from juctuations 
Calculations of from equations (1 1H13) gave 8 f 4 for p* = 0.35 and T* = 2-74, in 

excellent agreement with the values obtained by the direct method. The lower precision 
obtained by this method is a consequence of the comparable magnitudes of the two 
terms on the right-hand side of equations (12) and (13), so that in each case the 
differences are small with large errors. The advantage of calculating r in this way is that 
it can be done from the results of a single simulation at fixed temperature and density. 
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526 J. W. Emsley et al. 

4.4. Calculations of with modijied potentials 
Returning to calculations of r by the direct method, we have made some 

exploratory calculations with modified Gay-Berne potentials in an attempt to 
determine the sensitivity of calculated values of r to the form of the potential. The Gay- 
Berne potential contains several parameters whose values might affect r, and changing 
the functional form would also, in principle, change the calculated density dependence 
of the orientational order. 

We chose to investigate first the effect of changing the steepness of the potential at 
inter-particle separations less than that for which U(G,, G2, r) is a minimum. However, 
this cannot be done in a simple way without changing other features of the potential. 
Thus, changing the repulsive part of U(Q, ,02 ,  r) by replacing R-12 by some higher 
power, say R-18, alters the potential in several respects. Figure 3 compares a 12-6 with 
an 18-6 Lennard-Jones potential. Note that the minimum in the 12-6 potential is 
shifted inwards and lowered relative to the 18-6 curve, and the area of the negative 
region is increased. We wished to change only the steepness of the Gay-Berne potential 
at short R, hence simply replacing R-12 by R-18 did not seem appropriate. 
Multiplying the 18-6 potential by a constant so as to give an equal well-depth as the 12- 
6 potential also raises the attractive part and makes the potential tend to zero more 
quickly as R increases. A compromise choice was to use the 18-6 form from R = O  to the 
position where U(h,,  Q2,  r) is a minimum, and then to switch to the 12-6 form for the rest 
of the range of R. This was achieved by shifting the minimum of the 18-6 form outward 
in R and upwards in energy, in such a way that the 12-6 and 18-6 potentials coincide at 
the minimum. The resulting hybrid potential, UHB, is continuous and has a continuous 
first derivative, and looks like a 12-6 potential with a steeper repulsive wall. It has the 
functional form (cf. equation (3)) 

U,, = C(R-12 - R W 6 )  R > 2'16 

R < 2'16 = C[(R - R,) - l 8  - (R  - R,) - + E,],  (18) 

where the shift parameters are 
R, ,2116 - 31/12 

1.6 

1.2 

ul= 
0.8 

0.4 

0.0 

-0.4 

r '  
Figure 3. The distance dependence, in scaled units of r*=(r/a,), of a Lennard-Jones 12-6 

potential (full line), and an 18-6 potential (dotted line). 
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0.8 

0.7 

- 0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

p2 

Simulations with UHB were performed with p*=O.32 and 0.35, and calculated 
variations of P,  with T* are shown in figure 4. 

The largest effect produced in changing from the Gay-Berne to the hybrid 
potentials is that Tz, is increased, for example by a factor of 4 at p*=O-32. This 
corresponds to a ratio of absolute transition temperatures, so that if c0 is chosen to 
make TN, = 400 K for p* = 0-32 and the Gay-Berne potential, which is a typical value for 
a nematic-isotropic transition temperature, then TN, for the hybrid potential is 1552 K. 

- 

- 

- 

- 

- 

- 

- 

- 

0.9 I 

n l  " 
0 5 10 15 20 

T* 
Figure 4. Dependence of P2 on T* calculated with the hybrid potential, U,,, for scaled 

densities of 0.32 (A), and 0 3 5  (m). The continuous lines are the best fits to equation (16). 

3.5 
0 '  
0.5 1 1.5 2 2.5 3 

T *  
Figure 5. Dependence of pz on T* calculated with the Gay-Berne potential with el/& -7, 

Ue=7, for scaled densities o f 0 3 2  ( A )  and 0 3 5  (a). The continuous lines are the best !;to 
equation (16). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
6
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1
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The value of I-, obtained either by the direct method, or from values of T&, increases ' 

from 8 & 1 to 10.5 1-0, demonstrating that the magnitude of this parameter does 
reflect the steepness of the repulsive part of the potential, albeit with a rather low 
sensitivity for these two potentials. 

We have also investigated the effect of changing the value of E J E , ,  to 7 compared 
with 5 for the Gay-Berne potential. This increases the well depth of the end-to-end 
relative to the side-by-side molecular arrangements, but has barely any effect on r, as 
shown by the data given in the table. The dependence of F, on T* obtained with this 
potential is shown in figure 5. The transition temperatures for p* =0*32 and 0-35 reduce 
with this value of E , / E ~ ~  but only by a ratio of 0-9. 

5. Conclusion 
We have shown that the Gay-Berne potential leads to a nematic phase in which the 

order parameter F, has a dependence on density which is in qualitative agreement with 
experimental measurements. The values calculated for the parameter r of about 8 are 
close to the experimental values which range between 2 to 6. Support was found for the 
view that the value of r obtained experimentally does reflect the nature of the potential, 
rather than being independent of the form of the pair potential and taking the value of 
unity, as required for molecular field potentials which are derived by averaging pair 
potentials. Thus increasing the steepness of the repulsive part of the potential in the 
simulations leads to an increased value for r. It should be possible, therefore, to use a 
comparison between observed and calculated values of l- to adjust the balance between 
repulsive and attractive parts of a model potential. This is not a simple task for the 
Gay-Berne potential since it is difficult to discern with any precision how the many 
parameters in this potential influence the value of r. However, we do know that for 
hard rods r is necessarily infinite, and in contrast to this, computer simulations have 
shown that for particles interacting via a scalar Lennard-Jones potential with an 
embedded anisotropic attractive term r is approximately unity [23]. These observ- 
ations suggest therefore that it is the relative contributions of the anisotropic repulsive 
and attractive forces which determines r and to decrease this quantity the relative 
importance of the anisotropic attractive term should be increased. In other words, for 
the Gay-Berne potential the variation of a(h,, h,, 3)  with the molecular orientation 
should be reduced, or the angular variation of the well depth, E~EI(G,,  h,)~;(d,, h,, 3) 
should be increased. The anisotropy in cr(hl, h,, 3)  is controlled by the single parameter 
1; this takes values from zero for spheres to unity for infinitely long rods. In principle, 
therefore, we could reduce the importance of the anisotropy in the repulsive forces by 
reducing x. In practice, however, decreasing x will also reduce the anisotropy in the 
attractive contribution to the potential because cl(G1, h,) is also controlled by x (see 
equation (4)). A further complication with the existing Gay-Berne potential is that even 
in the limit that x goes to zero some anisotropy in the well depth remains because of 
the other contribution, cZ(G1, h,, 3), which was introduced to allow for the dependence 
of the attractive term on the molecular orientation with respect to the intermolecular 
vector (see equation (6)). Nonetheless it is clear that to be able to vary the relative 
contribution of the attractive and repulsive forces to the Gay-Berne potential the 
quantity x in equations (4) and (10) should be allowed to take different values. This 
necessarily introduces a new parameter X" into the equation for &,(a1, 0,) which is 
determined by the change in energy when the molecules pass from being parallel to 
being perpendicular to each other. The behaviour of particles interacting with such a 
modified Gay-Berne potential remains to be explored. 
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Appendix 
We outline here the derivation of equations ( l lH13)  which are the basis for the 

calculation of r from fluctuations. Beginning with the definition of P2, 
P2=Z-1~P2(cos Bl)exp(- U/k,T)dz, ... dz,, (A 1) 

with 

and T~ represents the position, ri,  and orientation, R ,  of molecule i. Differentiating with 
respect to T gives equation (12), 

Z=jeXp(- U/kBT)dz l . .  . dZ,, 

Note that we are using ( ) to denote an average in the canonical ensemble, whilst 
retaining the bar notation for F2. This is to be able to denote the kind of ensemble over 
which the average is performed, and keeping the widely accepted notation for the order 
parameter. In order to differentiate equation (A 1) with respect to volume, a 
transformation to dimensionless coordinates is useful [24], so that r i  is replaced by 
V1I3Rir and 

VdRi = dr,. 
The pair potential U(V1l3Rij, R,, R,) can now be differentiated with respect to V, and a 
transformation back to the original coordinates gives equation (1 3), 

V(aPz(l)/av), = CP2(1)(W) - (P2(1)W)I /kJ .  (A 3) 
Because these quantities depend upon fluctuations, they are not independent of the 
ensemble used for their calculation. Thus, the derivation is based on equation (A l ) ,  
which requires a constant N VT ensemble. The molecular dynamics simulations are 
carried out on an ensemble at constant NVE, so correction terms for the change of 
ensemble must be included. The general expression for this change is [18], 

where 
(6A6B)E = (6A6B) -(a(A)/aT)(a(B)/aT)/C, ,  

( 6 A W  = ( ( A  - ( A ) ) @  - ( B ) ) )  

(A 4) 

= ( A B )  - ( A ) @ ) .  

Application of equation (A 4) to equations (A 2) and (A 3 )  then gives 

r = -(~NkB)(6P26W)E/{(2C,)(6P26~)E} - 2(6 W6U )$(5Nk;T2). (A 5 )  

( ) E  represents an average in the microcanonical ensemble and the factors of 5/2 in this 
final expression arise from the equipartition of kinetic energy in the 5 degrees of 
freedom of each Gay-Berne particle. 
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